
Mohammad Mir,
Professor-Virology
College of Veterinary Medicine
Join year: 2015
Post-Doc (Molecular Virology),2005, University of New Mexico, Albuquerque, NM, USA
PhD (Structural and Molecular Biology), 2002,Biophysics division, Saha Institute of Nuclear Physics, Department of Atomic Energy of India.
Post-Graduate diploma(Biophysics ),1996, Biophysics division, Saha Institute of Nuclear Physics, Department of Atomic Energy of India.
MS (Biochemistry),1995, University of Kashmir, Srinagar, India
Bio-molecular recognition: It always fascinated me how bio-molecules recognize each other in a precise and specific manner to drive a network of molecular reactions in smooth and timely fashion inside the cell.
Host-Pathogen molecular Cross talk: The molecular cross talk between pathogen and host factors predicts the out come of infectious disease. The detailed evaluation of cellular networks, identification and characterization of pathogen and host factors will provide key insights for the development of therapeutic approaches for infectious diseases, posing significant threat to human and animal health.
Therapeutic intervention of infectious diseases: The machineries replicating the genome of infectious pathogen are not full proof. They make mistakes and hence lead to the emergence virulent strains. The rapid mutations in the genome impact the bio-molecular recognition and result in the eviction of existing anti-infectious agents. However, the molecular biology and medicinal chemistry research approaches focused on the characterization of new drug targets and synthesis of new therapeutic molecules will overcome the threat from emerging infectious pathogens.
Learning requires a prepared mind. I believe a powerful tool for an educator is to create motivation among students for the subject material. Clean understanding of basic concepts lays down a strong foundation for acquiring additional knowledge, generating new hypothesis and finding correct solutions in the process of learning. Knowledge gained through problem based learning, independent thinking and analytical reasoning has implicit memory.
The central goal of my research program is to understand how RNA viruses promote the translation of their mRNAs within host cells, where countless cellular transcripts compete for the same translation machinery. We have demonstrated that viruses from theHantaviridaeandNairoviridaefamilies exploit their nucleocapsid proteins to recruit the host translational apparatus by enhancing ribosome engagement at the 5′ untranslated region (UTR) of viral mRNAs.
Our current focus is to determine whether nucleocapsid proteins can also facilitate the translation of proviral host factors that contribute to the establishment of viral infection. By concentrating on the translational control of infection, this program aims to identify both viral and host factors essential for the earliest stages of infection. These factors will then serve as targets for antiviral drug development, with the ultimate goal of curing the deadly diseases caused by these highly infectious viral pathogens.
This research is supported by theNIHand theDepartment of Defense (DoD).
1. American Society for virology: (2005-present) Regular member
2. Biophysical Society: (2005-present) Regular member
3. American Society for Biochemistry and Molecular Biology: (2005-present) Regular member
Complete List of Published Work in MyBibliography
Mir, MAand Dasgupta, D. Association of the anticancer antibiotic chromomycin A3 with the nucleosome: Role of core histone tail domains in binding process. Biochemistry (2001), 40, 11578-11585
Mir, MAand Dasgupta, D. Interaction of antitumor drug, mithramycin with chromatin. Biochemical and Biophysical Research Communication. (2001), 280, 68-74
Mir, MAand Dasgupta, D. Interaction of mithramycin with chromatin. Indian Journal of Biochemistry and Biophysics, (2001), 38, 71-74
Chaktabarty, S, Mir, MA and Dasgupta, D. Differential interaction of antitumor antibiotics chromomycin A3 and mithramycin with d(TATGCATA)2 in presence of Mg2+. Biopolymers , (2001), 62, 131-140
Mir, MAand Dasgupta, D. Association of anticancer drug mithramycin with H1 depletedchromatin: a comparison with native chromatin. Journal of Inorganic Biochemistry, (2003), 94, 72-77.
Mir, MA, Majee, S., Das, S. and Dasgupta, D. Association of chromatin with anticancer antibiotics mithramycin and chromomycin A3. Bioor Med. Chemistry, (2003), 11(13)2791-801
Mir, MA,Das, S and Dasgupta, D. N -terminal tail domains of core histones in nucleosome block access of anticancer drugs, mithramycin and chromomycin, to the nucleosomal DNA. Biophysical Chemistry, (2004) ,109:121-135
Mir, MAand A. T Panganiban. Trimeric hantavirus nucleocapsid protein binds specifically with the viral RNA panhandle. J. Virol. (2004) Aug;78(15):8281-8
Mir, MAand A. T Panganiban. The hantavirus nucleocapsid protein recognizes specific features of the viral RNA panhandle and is altered in conformation upon binding. J Virol. (2005) Feb;79(3):1824¬35.
Mir, MAand A. T Panganiban. Characterization of RNA chaperon activity of Hantavirus Nucleocapsid protein activity. J. Virol, (2006) Jul;80 13:6276-85.
Mir, MA, B. Brown, B.L. Hjelle, W.A Duran and A. T Panganiban . Hantavirus N protein exhibits genus specific recognition of the v RNA panhandle, (2006), J. Virol. 13:6276-850
Mir, MAand A. T Panganiban. Hantavirus Nucleocapsid protein is an RNA Chaperon. RNA, (2006), 12:272-282.
Mir, MA, and A. T Panganiban: A protein that replaces entire eIF4F complex, EMBO Journal, (2008), Dec 3;27(23):3129-39
Mir. MA, Hjelle, B. Ye, C and A. T Panganiban: Cap snatching Revised: Viral storage of cellular 5’mRNA caps in P bodies: Proc. Natl. Acad. Sci. USA, 2008, 2008 Dec 9;105(49):19294-9.T Panganiban and
Mir, MA: Bunyavirus N: elF4F surrogate and Cap –Guardian: Cell Cycle, 2009, May 1; 8(9): 1332-7.
Mir, MA*and A. T Panganiban: The triplet repeats of the Sin Nombre hantavirus 5' untranslated region are sufficient in cis for nucleocapsid-mediated translation initiation: J. Virology, (2010) Sep;84(17):8937-44.
Mir, MA*, Hantaviruses, Clinics in Laboratory Medicine, published by Elsevier. 2010 Mar; 30(1):67-91.
Mir, MA*, Sheema S, Abdul A, Haque A: Hantavirus nucleocapsid protein has distinct m7G cap and RNA binding sites, J. Biol. Chem. (2010) Apr 9;285(15):11357-68. Epub 2010 Feb 17
Haque, A andMir, MA* : Interaction of hantavirus nucleocapsid protein with ribosomal protein S19 (RPS19). J virology, (2010). Dec;84(23):12450-3. Epub 2010 Sep 15
Cheng, E. Haque, A. Rimmer, MA. Hussein, I. Sheema, S. Little, A and Mir, MA*: Characterization of the interaction between hantavirus nucleocapsid protein (N) and ribosomal protein S19 (RPS19): J. Biol. Chem, (2011).Apr 1;286(13):11814-24. Epub 2011 Feb 4.
Islam T. M. Hussein, Hasseb, A. Haque, A. & Mir, MA*: Recent advances in hantavirus molecular biology and disease: Advances in Applied Microbiology, 2011, 74:35-75
Islam T. M. Hussein, Erdong Cheng, Michael J. Werle, Sheema Sheema and Mir MA*: Autophagic clearance of Sin Nombre hantavirus glycoprotein Gn promotes virus replication in cells, J. Virology, (2012), Jul;86(14):7520-9. doi: 10.1128/JVI.07204-11. Epub 2012 May 2
Cheng E, Mir MA*. Signatures of host mRNA 5' terminus for efficient hantavirus cap snatching.J Virol, (2012) Sep;86(18):10173-85. doi: 10.1128/JVI.05560-11. Epub 2012 Jul 11.
Islam T. M. Hussein, Mir, MA*How hantaviruses modulate the basic cellular pathways during infection. Front Biosci (Elite Ed). 2013 Jan 1;5:154-66.
Ganaie, S.S and Mir MA *. The role of viral genomic RNA and nucleocapsid protein in the autophagic clearance of hantavirus glycoprotein Gn. Virus Res.2014 Jan 8. pii: S0168-1702(13)00480-2.
Cheng E and Mir, MA*. Crimean Congo Hemorrhagic fever virus nucleocapsid protein favorus mRNA translation with the assistance of viral mRNA 5’ UTR. J. Virology (Under review)
Safdar S Ganaie , Absarul Haque, Erdong Cheng, Tania S. Bonny, Nilsahd N. Salim and Mir MA*. RPS19 binding domain provides key insights into hantavirus N-mediated translation initiation mechanism. Biochemical Journal. 2014 Jul 25. [Epub ahead of print]
Cheng E and Mir MA*.The interaction between hantavirus nucleocapsid protein and viral RdRp is required for viral mRNA synthesis J Virol. 2014 Aug 1;88(15):8706-8712. Epub 2014 May 21.
Wang Z and Mir MA*. Andes virus nucleocapsid protein interrupts PKR dimerization to counteract the host interference in viral protein synthesis. J. Virol. 2015 Nov 19. pii: JVI.02347-14. [Epub ahead of print]
Salim N, Ganaie S.S, Roy, A, Jeeva Subbiah and Mir MA*. Targeting a novel RNA-protein interaction for therapeutic intervention of hantavirus disease. J. Biol, Chem. 2016. Oct 12. pii: jbc.M116.750729
I am a multidisciplinary virologist interested in molecular mechanism of virus replication and therapeutic intervention of viral diseases. I am enthusiastic to train next generation of virologists with a background in veterinary sciences at the College of veterinary medicine, Western University of Health Sciences. The veterinarians with research experiences in cutting edge virology will serve as specialized lead work force in the frontier areas of infectious disease.