

# ANESTHESIA FOR PATIENTS WITH CARDIOVASCULAR, RESPIRATORY & GASTROINTESTINAL DISEASES

Lyon Lee DVM PhD DACVA

## Patients with Cardiovascular Diseases

#### General considerations

- Most anesthetics produce some degree of cardiovascular depression
- The patient with preexisting cardiovascular disease often has reduced cardiac reserve less ability to compensate for anesthetic-induced depression
- Usually patients with compensated cardiovascular disease (that is, not exhibiting any clinical symptoms of their disease) tolerate anesthesia fairly well
- The cardiopulmonary system functions to ensure that the rate of delivery of oxygen (DO<sub>2</sub>) meets or exceeds the consumption of oxygen (VO<sub>2</sub>) in the whole body (review Cardiopulmonary Physiology lecture)
- Effects of anesthetics on the cardiovascular system are
  - o impairment of calcium utilization (inhalants, barbiturates)
  - o alteration of systemic vascular resistance, heart rate, blood pressure
  - o development of intracellular acidosis (secondary to respiratory depression)
- Many different types of cardiovascular disease may be encountered
  - o congenital heart disease
  - o acquired valvular disease
  - o significant preexisting arrhythmias
  - hypotension/hypovolemia
  - o dilated cardiomyopathy
  - anemia
- Primary goals of anesthetic management in these patient groups are to
  - o avoid wide swings in heart rate
  - o minimize changes in preload and afterload
  - o prevent hypovolemia or overhydration
  - o minimize changes in inotropy (myocardial contractility)

### Ways to support the cardiovascularly challenged patients

- Stabilize heart rate & rhythm prior to anesthesia if possible
- Optimize cardiac function prior to anesthesia if possible
- Physical examination: observe jugular distension, pulsation, palpate peripheral arterial pulse quality, auscultate heart for assessing characters of pulsation
- Thorough cardiac evaluation prior to anesthesia ECG, Doppler echocardiograph, thoracic radiographs, blood pressure measurement, ultrasonography, cardiac catheterization
- Laboratory evaluation PCV, TP, hemoglobin content, arterial blood gases, electrolytes
- Choose anesthetic agents that produce minimal cardiovascular changes and preferably have drugs of short duration of action or that are reversible
- Preanesthetics: rely mostly on opioids +/- benzodiazepines: neuroleptanalgesic combination
- Anticholinergics are used judiciously
- Employ local anesthetic technique under sedation or even general anesthesia
- Induction: propofol, etomidate, ketamine, mask with inhalant
- Maintenance: usually isoflurane or sevoflurane (rapid recovery and less cardiovascular depression than halothane)
- Monitor cardiovascular performance
  - o ECG: rate and rhythm
  - o arterial blood pressure (BP =  $CO \times SVR$ )
  - o central venous pressure (preload)
- Treat arrhythmias if they develop
  - o significant VPC lidocaine, beta-blockers
  - o significant bradycardia or bradyarrhythmias glycopyrrolate, atropine, isoproterenol or temporary pace maker implant if medically nonresponsive
- Support inotropy with
  - o adrenergic agonists
    - dobutamine
    - dopamine
    - doepxamine
    - ephedrine
    - norepinephrine
    - epinephrine
  - o phophodiesterase inhibitor
    - milrinone
    - amrinone
    - enoximone
    - theophylline
    - pentoxyfylline
  - o calcium channel sensitizer
    - levosimendan
    - pimobendan
  - o digoxin
  - o calcium
  - o glucagon

# Case example

- "Taylor"
- Signalment: 6 month old intact male Maltese of 2kg in bwt
- History: presented for evaluation of inappetence, ataxia, weakness and exercise intolerance
- Significant physical exam findings: ataxia, muscle weakness, heart murmur
- Laboratory finding: no abnormalities noted
- Thoracic radiographs: enlarged heart shadow
- Echocardiographic findings: patent ductus arteriosus
- Presented for PDA surgical ligation

|                             | Goal & Plan                                                                                                                | Action                                                                                                            |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Preanesthetic<br>medication | Maintain diastolic blood<br>pressure, avoid alpha<br>blockers (phenothiazine)                                              | Neuroleptanalgeisa:<br>midazolam 0.2 mg/kg IM,<br>oxymorphone 0.1 mg/kg IM;<br>glycopyrrolate 0.01 mg/kg IM       |
| Anesthetic induction        | Little change of blood<br>pressure, myocardial<br>contractility                                                            | Diazepam 0.1 mg IV + Etomidate 3 mg/kg IV to effect                                                               |
| Maintenance of anesthesia   | Avoid deep plane of<br>anesthesia, Little change<br>of blood pressure,<br>myocardial contractility,<br>support ventilation | Sevoflurane endtidal 2.0 – 2.4 %, fluids 10 ml/kg/hr, dopamine 1- 5 mcg/kg/min PRN, controlled ventilation (IPPV) |
| Monitoring                  | Oxygenation, circulation, ventilation, temperature                                                                         | ECG, pulse oximetry,<br>capnography, invasive ABP,<br>CVP, temp, ABG                                              |
| Postoperative care          | Patent airway, avoid<br>hypothermia, pain<br>control                                                                       | Leave the ET tube as long as possible, Forced warm air blanket, pulse oximetry, oxymorphone 0.05 mg/kg IV         |

# **Patients with Respiratory Diseases**

#### General considerations

- Many anesthetics produce some degree of respiratory depression
- The respiratory depression in combination with cardiovascular depression induced by most anesthetics, decreases oxygen availability in the tissues
- Avoid heavy sedation that may induce excessive respiratory depression
- May have impairments of ventilation, oxygenation, or both
- Ventilatory impairment affects acid/base balance
- Oxygenation impairment affects oxygen delivery to tissues
- Respiratory disease may be divided into upper or lower airway disease
  - With upper airway disease, the key is to bypass the upper airway obstruction as quickly as possible
  - With lower airway disease, our ability to correct/manage the problem may be more limited
- Patient with poor compliance of the lung (restrictive disease such as pulmonary edema, fibrosis or effusion) tend to adopt rapid shallow ventilatory pattern
- Patients with obstructive disease (laryngeal paralysis, collapsing trachea, small airway disease) tend to adopt a slower pattern with increased respiratory effort
- Inspiratory dyspnea is usually associated with extrathoracic and expiratory dyspnea with intrathoracic lesion in origin.
- If pneumonic that can be treated with antibiotics and other supportive therapy, delay the surgery as long as possible until the symptom gets fully resolved

## Preoperative evaluations

- Thorough physical exam and ancillary investigation
- Does the patient exhibit dyspnea at rest? with exercise/stress?
- Is there stridor present?
- Thorough auscultation of the lungs and trachea
- Radiographs/ultrasonography
- ECG
- Pulse oximetry
- Wright's respirometer and tight fitting face mask to assess respiratory volume (tidal volume and minute ventilation)
- Blood gas analysis

# Keys to anesthetic management

- Preoxygenate, if possible
- Thoracocentesis if needed (remove air, fluid, blood, etc...)
- Minimize stress
- Tranquilization/sedation with short acting or reversible drugs
  - o Opioids (resp. Depression)
  - o Benzodiazepines
  - o Phenothiazines?
  - o Avoid excessive doses so as to prevent resp depression
- Rapid induction with short acting anesthetic agents
  - Thiobarbiturates

- Propofol
- o Etomidate
- o Ketamine
- minimize oxygen deficit period by allowing rapid intubation and ventilation
- Control airway as quickly as possible, begin positive pressure ventilation (esp. with lower airway disease)
- Nitrous oxide may be better avoided.
  - o It diffuses into gaseous pocket and worsens symptoms such as pneumothorax
  - o It reduces the inspiratory fraction of oxygen
- Monitoring:
  - o ECG
  - o Pulse oximetry
  - o BP
  - Capnography
  - Serial blood gas analysis
  - o Tidal volume and peak airway pressure (thoracic compliance)
  - Temperature
- Recovery
  - o Maintain ET tube in situ as long as possible
  - Post-operative pulse oximetry
  - Support ventilation as long as possible
  - o Consider post anesthetic oxygen supplementation
    - mask
    - nasal catheter
    - oxygen cage
  - o Minimize stress, judicious use of tranquilizers/sedatives if needed
  - o If acute respiratory obstruction occurs post extubation, be prepared to reinduce anesthesia & reintubate rapidly
  - o Treat chest pain so as to facilitate better use of respiratory muscle

## Case example 1

- "Jake"
- Signalment: 1 year old intact male Labrador retriever
- History: presented for evaluation anorexia, listlessness of one week's duration
- Significant physical exam findings: tachypnea, fever
- Laboratory finding: elevated white blood cell count
- Thoracic radiographs: pleural fluid, lung lobe collapse (suspect lung lobe torsion)
- Presented for anesthesia 3/27 for thoracic exploratory

Preanesthetic management?

Anesthetic induction?

Maintenance of anesthesia?

Monitoring?

Postoperative care?

### Case example 2

- "Miss Genuines"
- Signalment: 1 week old Quarter Horse filly
- History: presented for choanal atresia
- Significant physical exam findings: normal neonatal foal except for nasal obstruction
- Laboratory finding: normal
- Referring DVM had performed a tracheostomy shortly after birth
- Presented for anesthesia 4/6 for laser surgical correction of choanal atresia

Preanesthetic management?

Anesthetic induction?

Maintenance of anesthesia?

Monitoring?

Postoperative care?

Anesthesia: 6 of 8

#### **Patients with Gastrointestinal Diseases**

#### General considerations

- Variety of disease processes...
- Malabsorption
- Derangement of electrolytes, acid-base status
- hypovolemia
- Preoperative stabilization of fluid balance, electrolyte balance important, if possible...

## Gastric dilitation/volvulus (GDV)

- Surgical emergency
- Present with:
  - o Respiratory compromise
  - o Cardiovascular compromise
  - o Cardiac dysrhythmias (VPCs, V tach, tachycardia)
  - Hypotension
  - o Hypoxemia
  - Acid/base disturbances
- If possible, decompress stomach prior to anesthesia
- Large volumes of IV fluids rapidly (multiple large bore catheters) at 40-90 ml/kg
- Acid/base evaluation helpful
- Monitor & treat cardiac dysrhythmias as they present lidocaine usually first line of defense
- Anesthetic management
  - o Preanesthetic: opioids +/- benzodiazepines
  - o Induction:
    - rapid induction to gain control of airway quickly is preferable, initiate positive pressure ventilation
    - may be able to intubate w/ neuroleptanalgesic combination (eg oxymorphone + diazepam)
    - propofol preferred
    - low dose thiopental may be used but cautiously potential for aggravating arrhythmias
    - mask induction w/ isoflurane/sevoflurane may be used but it is still slower
  - Maintenance
    - isoflurane/sevoflurane
    - supplemental opioids (eg oxymorphone, hydromorphone, fentanyl) IV to reduce inhalant concentration
  - o IPPV usually needed
  - o Monitor cardiovascular system closely
    - ECG
    - Blood pressure

# **Equine Colic**

- One of our most common emergency surgical procedures
- Patients present in a variety of conditions, from minimally to severely compromised
  - o Respiratory compromise
  - Cardiovascular compromise
  - o Dehydration
  - o Hypotension
  - Hypoxemia
  - Electrolyte imbalances
  - Acid/Base disturbances
- Again, stabilize if possible
  - Large volumes of fluids IV rapidly (multiple large bore catheters)
  - o Bicarbonate if acidotic
  - o Pain management (usually w/ alpha-2, NSAID such as Flunixin meglumine)
- Our current anesthetic protocol
  - o Premedicate with xylazine + butorphanol or xylazine
  - o Induce with diazepam + ketamine or GGE + ketamine
  - o Maintain with sevoflurane
  - Monitor
    - invasive blood pressure
    - ECG
    - capnography
    - serial blood gases and electrolytes
  - Controlled ventilation (IPPV)
  - o Multiple IV lines for rapid fluid administration
  - Dobutamine or other positive inotropes to support BP and CO
  - o Calcium supplementation if hypocalcemic
  - o Colloids if TP < 4 g/dl
- Recovery often slow postoperative pain management should be considered